Extensions 1→N→G→Q→1 with N=C22 and Q=C4×D9

Direct product G=N×Q with N=C22 and Q=C4×D9
dρLabelID
C22×C4×D9144C2^2xC4xD9288,353

Semidirect products G=N:Q with N=C22 and Q=C4×D9
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×D9) = C4×C3.S4φ: C4×D9/C12S3 ⊆ Aut C22366C2^2:(C4xD9)288,333
C222(C4×D9) = Dic94D4φ: C4×D9/Dic9C2 ⊆ Aut C22144C2^2:2(C4xD9)288,91
C223(C4×D9) = C4×C9⋊D4φ: C4×D9/C36C2 ⊆ Aut C22144C2^2:3(C4xD9)288,138
C224(C4×D9) = C22⋊C4×D9φ: C4×D9/D18C2 ⊆ Aut C2272C2^2:4(C4xD9)288,90

Non-split extensions G=N.Q with N=C22 and Q=C4×D9
extensionφ:Q→Aut NdρLabelID
C22.1(C4×D9) = D36.C4φ: C4×D9/Dic9C2 ⊆ Aut C221444C2^2.1(C4xD9)288,117
C22.2(C4×D9) = D36.2C4φ: C4×D9/C36C2 ⊆ Aut C221442C2^2.2(C4xD9)288,112
C22.3(C4×D9) = C22.D36φ: C4×D9/D18C2 ⊆ Aut C22724C2^2.3(C4xD9)288,13
C22.4(C4×D9) = C4.D36φ: C4×D9/D18C2 ⊆ Aut C221444-C2^2.4(C4xD9)288,30
C22.5(C4×D9) = C36.48D4φ: C4×D9/D18C2 ⊆ Aut C22724+C2^2.5(C4xD9)288,31
C22.6(C4×D9) = C23.16D18φ: C4×D9/D18C2 ⊆ Aut C22144C2^2.6(C4xD9)288,87
C22.7(C4×D9) = M4(2)×D9φ: C4×D9/D18C2 ⊆ Aut C22724C2^2.7(C4xD9)288,116
C22.8(C4×D9) = C8×Dic9central extension (φ=1)288C2^2.8(C4xD9)288,21
C22.9(C4×D9) = Dic9⋊C8central extension (φ=1)288C2^2.9(C4xD9)288,22
C22.10(C4×D9) = C72⋊C4central extension (φ=1)288C2^2.10(C4xD9)288,23
C22.11(C4×D9) = D18⋊C8central extension (φ=1)144C2^2.11(C4xD9)288,27
C22.12(C4×D9) = C18.C42central extension (φ=1)288C2^2.12(C4xD9)288,38
C22.13(C4×D9) = C2×C8×D9central extension (φ=1)144C2^2.13(C4xD9)288,110
C22.14(C4×D9) = C2×C8⋊D9central extension (φ=1)144C2^2.14(C4xD9)288,111
C22.15(C4×D9) = C2×C4×Dic9central extension (φ=1)288C2^2.15(C4xD9)288,132
C22.16(C4×D9) = C2×Dic9⋊C4central extension (φ=1)288C2^2.16(C4xD9)288,133
C22.17(C4×D9) = C2×D18⋊C4central extension (φ=1)144C2^2.17(C4xD9)288,137

׿
×
𝔽